use std::fs::File; use std::io::Read; #[derive(Debug)] pub struct Flags { pub zero: u8, //Zero flag pub n: u8, //Subtraction flag (BCD) pub h: u8, //Half carry flag (BCD) pub carry: u8, //Carry flag } impl Flags { fn new() -> Self { Flags { zero: 0, n: 0, h: 0, carry: 0, } } } #[derive(Debug)] pub struct Chip { pub a: u8, //Upper bits of AF, the Accumulator pub b: u8, pub c: u8, pub d: u8, pub e: u8, pub h: u8, pub l: u8, pub instr: u8, //Current instruction pub sp: u16, //Stack pointer pub pc: u16, //Program counter pub byte2: u8, pub byte3: u8, pub flags: Flags, //Lower bits of AF, Flags register pub rom_bank_0: [u8; 16384], pub rom_bank_n: [u8; 16384], pub external_ram_bank_n: [u8; 8192], pub wram_bank_0: [u8; 4096], pub wram_bank_n: [u8; 4096], pub rom: Vec, } impl Chip { pub fn new() -> Self { Chip { a: 0, b: 0, c: 0, d: 0, e: 0, h: 0, l: 0, instr: 0, sp: 0, pc: 0, byte2: 0, byte3: 0, flags: Flags::new(), rom_bank_0: [0; 16384], rom_bank_n: [0; 16384], external_ram_bank_n: [00; 8192], wram_bank_0: [0; 4096], wram_bank_n: [0; 4096], rom: Vec::new(), } } pub fn load_rom(&mut self, rom_path: &str) { let mut rom = File::open(rom_path).unwrap_or_else(|_err| panic!("Valid ROM needed!")); rom.read_to_end(&mut self.rom).unwrap_or_else(|_err| panic!("Error reading ROM")); for i in 0..self.rom_bank_0.len() { self.rom_bank_0[i] = self.rom.get(i).unwrap().to_owned(); } self.pc = 0x0100; } pub fn write_memory(&mut self, pc: u16, value: u8) { match pc { 0x0000..=0x3fff => { println!("Writing: ROM Bank 0"); self.rom_bank_0[pc as usize] = value }, //Fixed bank, rom_bank_0 0x4000..=0x7fff => { println!("Writing: ROM Bank 1"); self.rom_bank_n[pc as usize - 0x4000] = value }, 0x8000..=0x9fff => { }, 0xa000..=0xbfff => { }, 0xc000..=0xcfff => { }, 0xd000..=0xdfff => { }, 0xfe00..=0xfe9f => { }, 0xff00..=0xff7f => { }, 0xff80..=0xfffe => { }, 0xffff..=0xffff => { }, _ => { } }; } pub fn read_memory(&self, pc: u16) -> u8 { let address = match pc { 0x0000..=0x3fff => { println!("ROM Bank 0"); self.rom_bank_0[pc as usize] }, //Fixed bank, rom_bank_0 0x4000..=0x7fff => { println!("ROM Bank 1"); self.rom_bank_n[pc as usize - 0x4000] }, 0x8000..=0x9fff => { 0x0 }, 0xa000..=0xbfff => { 0x0 }, 0xc000..=0xcfff => { 0x0 }, 0xd000..=0xdfff => { 0x0 }, 0xfe00..=0xfe9f => { 0x0 }, 0xff00..=0xff7f => { 0x0 }, 0xff80..=0xfffe => { 0x0 }, 0xffff..=0xffff => { 0x0 }, _ => { 0xff } }; address } pub fn fetch(&mut self) { self.instr = self.read_memory(self.pc); let arg1 = self.read_memory(self.pc + 1); let arg2 = self.read_memory(self.pc + 2); self.byte2 = arg1; self.byte3 = arg2; println!("Instr: 0x{:02X}", self.instr); self.pc += 1; println!("0x{:02X?}", &self.rom_bank_0[self.pc as usize..(self.pc + 10) as usize]); } //Lookup the u8 register table to get the u16 address we want to look at. We are constructing the address //to read/write from/to based on this table fn get_r16_register_address(&self, register_code: u8) -> u16 { //Example // reg b = 0x00ca // reg c = 0x00fe // reg b << 8 = 0xca00 // bitwise OR with reg c results in 0xcafe match register_code { 0b001 => { (self.b as u16) << 8 | self.c as u16 }, 0b011 => { (self.d as u16) << 8 | self.e as u16 }, 0b101 => {(self.h as u16) << 8 | self.l as u16 }, 0b111 => { self.sp }, _ => { panic!("Cannot get register address: Unknown register code {}", register_code) } } } fn get_r8_register(&mut self, register_code: u8) -> u8 { match register_code { 0 => { self.b }, 1 => { self.c }, 2 => { self.d }, 3 => { self.e }, 4 => { self.h }, 5 => { self.l }, 6 => { let memory_address = self.get_r16_register_memory_address(0b101); self.read_memory(memory_address) }, //[HL] 7 => { self.a }, _ => { panic!("Cannot get register code: Unknown register code {}", register_code) } } } fn set_r8_register(&mut self, register_code: u8, value: u8) { match register_code { 0 => { self.b = value }, 1 => { self.c = value }, 2 => { self.d = value }, 3 => { self.e = value }, 4 => { self.h = value }, 5 => { self.l = value }, 6 => { let memory_address = self.get_r16_register_memory_address(0b101); self.write_memory(memory_address, value) }, //[HL] 7 => { self.a = value }, _ => { panic!("Cannot get register code: Unknown register code {}", register_code) } } } // Write a 16 bit value to a pair of registers based on the usual pairing fn set_r16_register_address(&mut self, register_code: u8, value: u16) { let high = (value >> 8) as u8; let low = (value & 0xff) as u8; match register_code { 0b001 => { self.b = high; self.c = low; }, 0b011 => { self.d = high; self.e = low; }, 0b101 => { self.h = high; self.l = low; }, 0b111 => { self.sp = value; }, _ => { panic!("Cannot set register address: Unknown register code {}", register_code) } }; } // Get the memory address pointed to by a register pair. This is basically the r16mem table // This returns a 16 bit memory address fn get_r16_register_memory_address(&mut self, register_code: u8) -> u16 { match register_code { 0b001 => { (self.b as u16) << 8 | self.c as u16 }, 0b011 => { (self.d as u16) << 8 | self.e as u16 }, 0b101 => { let hl = (self.h as u16) << 8 | self.l as u16; //Get current HL value self.set_r16_register_address(0b101, hl+1); //Increment HL value and set it back to HL (ptr++) hl //Return HL }, 0b111 => { let hl = (self.h as u16) << 8 | self.l as u16; //Get current HL value self.set_r16_register_address(0b101, hl-1); //Decrement HL value and set it back to HL (ptr--) hl //Return HL }, _ => { panic!("Cannot get register address: Unknown register code {}", register_code) } } } pub fn execute(&mut self) { let mut next = 0; println!("{:b}", self.instr); let oct1 = (self.instr & 0b11000000) >> 6; let oct2 = (self.instr & 0b00111000) >> 3; let oct3 = self.instr & 0b00000111; println!("{:b} {:b} {:b}", oct1, oct2, oct3); match (oct1, oct2, oct3) { (0b11, 0b001, 0b001) => { }, //CB-prefixed instructions (0b00, 0b000, 0b000) => { println!("NOOP") }, //noop (0b00, 0b001, 0b000) => { self.ld_u16_sp() }, //LD (u16), SP (0b00, 0b010, 0b000) => { println!("STOP") }, //STOP (0b00, 0b011, 0b000) => { self.jr() }, //JR (0b00, 0b100..=0b111, 0b000) => { self.jr_cond(oct2) }, //JR conditonal (0b00,0b000|0b010|0b100|0b110, 0b001) => { self.ld_r16_u16(oct2) }, //LD r16, u16 (0b00,0b001|0b011|0b101|0b111, 0b001) => { self.add_hl_r16(oct2) }, //ADD HL, r16 (0b00,0b000|0b010|0b100|0b110, 0b010) => { self.ld_r16_addr_a(oct2) }, //LD (r16), A (0b00,0b001|0b011|0b101|0b111, 0b010) => { self.ld_a_r16_addr(oct2) }, //LD A, (r16) (0b00,0b000|0b010|0b100|0b110, 0b011) => { self.inc_r16(oct2) }, //INC r16 (0b00,0b001|0b011|0b101|0b111, 0b011) => { self.dec_r16(oct2) }, //DEC r16 (0b00, r8, 0b100) => { self.inc_r8(r8) }, //INC r8 (0b00, r8, 0b101) => { self.dec_r8(r8) }, //DEC r8 (0b00, r8, 0b110) => { self.ld_r8_n8(r8) }, //LD r8, u8 (0b00, opcode, 0b111) => { self.special_opcodes(opcode) }, //Opcode grp 1 (0b01, 0b110, 0b110) => { self.halt() }, //HALT (0b01, dst_r8, src_r8) => { self.ld_r8_r8(src_r8, dst_r8) }, //LD r8, r8 (0b10, op, r8) => { self.alu_a_r8(op, r8); }, //ALU A, r8 (0b11, 0b000..=0b011, 0b000) => { }, //RET condition (0b11, 0b100, 0b000) => { }, //LD (FF00 + u8), A (0b11, 0b101, 0b000) => { }, //ADD SP, i8 (0b11, 0b110, 0b000) => { }, //LD A, (FF00 + u8) (0b11, 0b111, 0b000) => { }, //LD HL, SP + i8 (0b11, 0b000|0b010|0b100|0b110, 0b001) => { }, //POP r16 (0b11, 0b001|0b011|0b101|0b111, 0b001) => { }, //0: RET, 1: RETI, 2: JP HL, 3: LD SP, HL (0b11, 0b000..=0b011, 0b010) => { }, //JP (0b11, 0b100, 0b010) => { }, //LD (FF00 + C), A (0b11, 0b101, 0b010) => { }, //LD (u16), A (0b11, 0b110, 0b010) => { }, //LD A, (FF00 + C) (0b11, 0b111, 0b010) => { }, //LD A, (u16) (0b11, opcode, 0b011) => { }, //0: JP u16, 1: CB prefix, 6: DI, 7: EI (0b11, 0b000..=0b011, 0b100) => { }, //CALL condition (0b11, 0b000|0b010|0b100|0b110, 0b101) => { }, //PUSH r16 (0b11, 0b001, 0b101) => { }, //CALL u16 (0b11, opcode, 0b110) => { }, //ALU a, u8 (0b11, exp, 0b111) => { }, //RST _ => { println!("Error: 0x{:02X} not implemented!", self.instr); std::process::exit(1); }, } // match self.instr { // 0x00 => { println!("NOOP!") } // 0x32 => { self.ldd_hl_a() } // 0x0e | 0x06 => { self.ld_rr(); next = 1; } // 0xa8..=0xaf => { self.xor_a_r8() } // 0x01 | 0x11 | 0x21 | 0x31 => { self.ld_rr_nn(); next = 2; }, // _ => { println!("Error: 0x{:02X} not implemented!", self.instr); std::process::exit(1); } // } self.pc += next; } // Load value from dst_r8 into src_r8. When called as LD r1 r2, this method // is called as ld_r8_r8(r2, r1) (Notice the inversion) fn ld_r8_r8(&mut self, src_r8: u8, dst_r8: u8) { let value = self.get_r8_register(src_r8); self.set_r8_register(dst_r8, value); } //TODO - Respond to interrupt fn halt(&mut self) { } //TODO fn special_opcodes(&mut self, opcode: u8) { } fn ld_r8_n8(&mut self, r8: u8) { self.set_r8_register(r8, self.byte2); } //Increment value in register r8 by 1 fn inc_r8(&mut self, register_lookup: u8) { let register = self.get_r8_register(register_lookup); let sum = register.wrapping_add(1); if sum == 0 { self.flags.zero = 0 } self.flags.n = 0; if ((0xf & register).wrapping_add(0xf & 1)) & 0x10 == 0x10 { self.flags.h = 1 } self.set_r8_register(register_lookup, sum); } //Decrement value in register r8 by 1 fn dec_r8(&mut self, register_lookup: u8) { let register = self.get_r8_register(register_lookup); let sum = register.wrapping_sub(1); if sum == 0 { self.flags.zero = 0 } self.flags.n = 1; if ((0xf & register).wrapping_sub(0xf & 1)) & 0x10 == 0x10 { self.flags.h = 1 } self.set_r8_register(register_lookup, sum); } //Increment value in register r16 by 1 fn inc_r16(&mut self, register_lookup: u8) { let mut register = self.get_r16_register_address(register_lookup); register = register.wrapping_add(1); self.set_r16_register_address(register_lookup, register); } //Decrement value in register r16 by 1 fn dec_r16(&mut self, register_lookup: u8) { let mut register = self.get_r16_register_address(register_lookup); register = register.wrapping_sub(1); self.set_r16_register_address(register_lookup, register); } //Load value pointed in memory by r16 register pair into register A fn ld_a_r16_addr(&mut self, register_lookup: u8) { let memory_address = self.get_r16_register_memory_address(register_lookup); self.a = self.read_memory(memory_address); } // Load the 8 bit value in register A to the memory address pointed by the register from the // table fn ld_r16_addr_a(&mut self, register_lookup: u8) { let memory_address = self.get_r16_register_memory_address(register_lookup); self.write_memory(memory_address, self.a); } //Add register r16 value to HL fn add_hl_r16(&mut self, register_lookup: u8) { let r16 = self.get_r16_register_address(register_lookup); let hl = self.get_r16_register_address(0b101); //0b101 == HL register pair let (sum, overflow_high) = r16.overflowing_add(hl); self.set_r16_register_address(0b101, sum); //Additions reset the n flag self.flags.n = 0; //Check 11th to 12th bit overflow if (r16 & 0xfff).overflowing_add(hl & 0xfff).1 as u8 == 1 { self.flags.h = 1 }; //Check 15th to 16th bit overflow if overflow_high { self.flags.carry = overflow_high as u8 }; } //Load value u16 into register r16 fn ld_r16_u16(&mut self, register_lookup: u8) { let address = (self.byte2 as u16) << 8 | self.byte3 as u16; self.set_r16_register_address(register_lookup, address); } //Conditional Jump fn jr_cond(&mut self, condition: u8) { let should_execute = match condition { 0b100 => { self.flags.zero != 0 }, 0b101 => { self.flags.zero == 0}, 0b110 => { self.flags.carry != 0 }, 0b111 => { self.flags.carry == 0 }, _c => { panic!("Unknown condition {}", _c) } }; if should_execute { let offset: i8 = self.byte2 as i8; self.pc = self.pc.wrapping_add_signed(offset.into()); } } //Unconditional relative jump fn jr(&mut self) { let offset: i8 = self.byte2 as i8; self.pc = self.pc.wrapping_add_signed(offset.into()); } //Store SP lower at address u16, and SP upper at address u16 + 1 fn ld_u16_sp(&mut self) { let address: u16 = (self.byte2 as u16) << 8 | self.byte3 as u16; self.write_memory(address, (self.sp & 0xff) as u8); self.write_memory(address + 1, (self.sp >> 8) as u8); } //All math based operations are processed here fn alu_a_r8(&mut self, opcode: u8, r8: u8) { match opcode { 0b000 => { self.add_a_r8(r8) }, 0b001 => { self.adc_a_r8(r8) }, 0b010 => { self.sub_a_r8(r8) }, 0b011 => { self.sbc_a_r8(r8) }, 0b100 => { self.and_a_r8(r8) }, 0b101 => { self.xor_a_r8(r8) }, 0b110 => { self.or_a_r8(r8) }, 0b111 => { self.cp_a_r8(r8) }, _ => {} } } fn add_a_r8(&mut self, r8: u8) { } fn adc_a_r8(&mut self, r8: u8) { self.a += self.flags.carry + r8; } fn xor_a_r8(&mut self, r8: u8) { let value = match r8 { 0 => { self.b }, 1 => { self.c }, 2 => { self.d }, 3 => { self.e }, 4 => { self.h }, 5 => { self.l }, 6 => { let ptr = ((self.h as u16) << 8) as u16 | self.l as u16; self.read_memory(ptr) }, 7 => { self.a }, _ => { panic!("Wrong register read for XOR_R") } }; self.a = self.a ^ value; self.flags.zero = (self.a == 0) as u8 } fn ld_rr(&mut self) { match self.instr { 0x0e => { self.c = self.byte2 }, 0x06 => { self.b = self.byte2 }, _ => {}, } } fn ldd_hl_a(&mut self) { let mut pc = ((self.h as u16) << 8) as u16 | self.l as u16; self.write_memory(pc, self.a); pc -= 1; self.h = (pc >> 8) as u8; self.l = (pc << 8 >> 8) as u8; } fn jmp_nn(&mut self) { println!("{:02X}, {:02X}", self.byte2, self.byte3); self.pc = ((self.byte3 as u16) << 8) as u16 | self.byte2 as u16; println!("Jumping to 0x{:02X}", self.pc); } fn ld_rr_nn(&mut self) { match self.instr { 0x01 => { self.b = self.byte3; self.c = self.byte2; }, //BC = nn (nn = MSB << 8 | LSB) 0x11 => { self.d = self.byte3; self.e = self.byte2; }, //DE = nn (nn = MSB << 8 | LSB) 0x21 => { self.h = self.byte3; self.l = self.byte2; }, //HL = nn (nn = MSB << 8 | LSB) 0x31 => { self.sp = ((self.byte3 as u16) << 8) as u16 | self.byte2 as u16 }, //HL = nn (nn = MSB << 8 | LSB) _ => { }, } } }