aboutsummaryrefslogtreecommitdiff
path: root/src/cpu/chip.rs
blob: c6a66099ad7d4899da5916a58a226a0a773205ee (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
use std::fs::File;
use std::io::Read;


#[derive(Debug)]
pub struct Flags {
    pub zero: u8, //Zero flag
    pub n: u8, //Subtraction flag (BCD)
    pub h: u8, //Half carry flag (BCD)
    pub carry: u8, //Carry flag
}

impl Flags {
    fn new() -> Self {
        Flags {
            zero: 0,
            n: 0,
            h: 0,
            carry: 0,
        }
    }
}

#[derive(Debug)]
pub struct Chip {
    pub a: u8, //Upper bits of AF, the Accumulator
    pub b: u8,
    pub c: u8,
    pub d: u8,
    pub e: u8,
    pub h: u8,
    pub l: u8,
    pub instr: u8, //Current instruction
    pub sp: u16, //Stack pointer
    pub pc: u16, //Program counter
    pub byte2: u8,
    pub byte3: u8,
    pub flags: Flags, //Lower bits of AF, Flags register
    pub rom_bank_0: [u8; 16384],
    pub rom_bank_n: [u8; 16384],
    pub external_ram_bank_n: [u8; 8192],
    pub wram_bank_0: [u8; 4096],
    pub wram_bank_n: [u8; 4096],
    pub rom: Vec<u8>,

}

impl Chip {
    pub fn new() -> Self {
        Chip {
            a: 0,
            b: 0,
            c: 0,
            d: 0,
            e: 0,
            h: 0,
            l: 0,
            instr: 0,
            sp: 0,
            pc: 0,
            byte2: 0,
            byte3: 0,
            flags: Flags::new(),
            rom_bank_0: [0; 16384],
            rom_bank_n: [0; 16384],
            external_ram_bank_n: [00; 8192],
            wram_bank_0: [0; 4096],
            wram_bank_n: [0; 4096],
            rom: Vec::new(),
        }
    }
    pub fn load_rom(&mut self, rom_path: &str) {
        let mut rom = File::open(rom_path).unwrap_or_else(|_err| panic!("Valid ROM needed!"));
        rom.read_to_end(&mut self.rom).unwrap_or_else(|_err| panic!("Error reading ROM"));

	for i in 0..self.rom_bank_0.len() {
            self.rom_bank_0[i] = self.rom.get(i).unwrap().to_owned();
        }
        self.pc = 0x0100;
    }
    pub fn write_memory(&mut self, pc: u16, value: u8) {
        match pc {
            0x0000..=0x3fff => { println!("Writing: ROM Bank 0"); self.rom_bank_0[pc as usize] = value  }, //Fixed bank, rom_bank_0
            0x4000..=0x7fff => { println!("Writing: ROM Bank 1"); self.rom_bank_n[pc as usize - 0x4000] = value },
            0x8000..=0x9fff => {  },
            0xa000..=0xbfff => {  },
            0xc000..=0xcfff => {  },
            0xd000..=0xdfff => {  },
            0xfe00..=0xfe9f => {  },
            0xff00..=0xff7f => {  },
            0xff80..=0xfffe => {  },
            0xffff..=0xffff => {  },
            _ => {  }
        };
    }
    pub fn read_memory(&self, pc: u16) -> u8 {
        let address = match pc {
            0x0000..=0x3fff => { println!("ROM Bank 0"); self.rom_bank_0[pc as usize]  }, //Fixed bank, rom_bank_0
            0x4000..=0x7fff => { println!("ROM Bank 1"); self.rom_bank_n[pc as usize - 0x4000] },
            0x8000..=0x9fff => { 0x0 },
            0xa000..=0xbfff => { 0x0 },
            0xc000..=0xcfff => { 0x0 },
            0xd000..=0xdfff => { 0x0 },
            0xfe00..=0xfe9f => { 0x0 },
            0xff00..=0xff7f => { 0x0 },
            0xff80..=0xfffe => { 0x0 },
            0xffff..=0xffff => { 0x0 },
            _ => { 0xff }
        };
        address
    }
    pub fn fetch(&mut self) {
        self.instr = self.read_memory(self.pc);
        let arg1 = self.read_memory(self.pc + 1);
        let arg2 = self.read_memory(self.pc + 2);
        self.byte2 = arg1;
        self.byte3 = arg2;
        println!("Instr: 0x{:02X}", self.instr);
        self.pc += 1;
        println!("0x{:02X?}", &self.rom_bank_0[self.pc as usize..(self.pc + 10) as usize]);
    }

    //Lookup the u8 register table to get the u16 address we want to look at. We are constructing the address
    //to read/write from/to based on this table
    fn get_r16_register_address(&self, register_code: u8) -> u16 {
        //Example
        // reg b = 0x00ca
        // reg c = 0x00fe
        // reg b << 8 = 0xca00
        // bitwise OR with reg c results in 0xcafe
        match register_code {
            0b001 => { (self.b as u16) << 8 | self.c as u16 },
            0b011 => {  (self.d as u16) << 8 | self.e as u16 },
            0b101 => {(self.h as u16) << 8 | self.l as u16 },
            0b111 => { self.sp },
            _ => { panic!("Cannot get register address: Unknown register code {}", register_code) }
        }
    }


    fn get_r8_register(&mut self, register_code: u8) -> u8 {
        match register_code {
            0 => { self.b },
            1 => { self.c },
            2 => { self.d },
            3 => { self.e },
            4 => { self.h },
            5 => { self.l },
            6 => { let memory_address = self.get_r16_register_memory_address(0b101); self.read_memory(memory_address) }, //[HL]
            7 => { self.a },
            _ => { panic!("Cannot get register code: Unknown register code {}", register_code) }

        }
    }

    fn set_r8_register(&mut self, register_code: u8, value: u8) {
        match register_code {
            0 => { self.b = value },
            1 => { self.c = value },
            2 => { self.d = value },
            3 => { self.e = value },
            4 => { self.h = value },
            5 => { self.l = value },
            6 => { let memory_address = self.get_r16_register_memory_address(0b101); self.write_memory(memory_address, value) }, //[HL]
            7 => { self.a = value },
            _ => { panic!("Cannot get register code: Unknown register code {}", register_code) }

        }
    }

    // Write a 16 bit value to a pair of registers based on the usual pairing
    fn set_r16_register_address(&mut self, register_code: u8, value: u16) {
        let high = (value >> 8) as u8;
        let low = (value & 0xff) as u8;
        match register_code {
            0b001 => { self.b = high; self.c = low; },
            0b011 => {  self.d = high; self.e = low; },
            0b101 => { self.h = high; self.l = low; },
            0b111 => { self.sp = value; },
            _ => { panic!("Cannot set register address: Unknown register code {}", register_code) }
        };
    }
    // Get the memory address pointed to by a register pair. This is basically the r16mem table
    // This returns a 16 bit memory address
    fn get_r16_register_memory_address(&mut self, register_code: u8) -> u16 {

        match register_code {
            0b001 => { (self.b as u16) << 8 | self.c as u16 },
            0b011 => {  (self.d as u16) << 8 | self.e as u16 },
            0b101 => {
                let hl = (self.h as u16) << 8 | self.l as u16; //Get current HL value
                self.set_r16_register_address(0b101, hl+1); //Increment HL value and set it back to HL (ptr++)
                hl //Return HL
            },
            0b111 => {
                let hl = (self.h as u16) << 8 | self.l as u16; //Get current HL value
                self.set_r16_register_address(0b101, hl-1); //Decrement HL value and set it back to HL (ptr--)
                hl //Return HL
            },
            _ => { panic!("Cannot get register address: Unknown register code {}", register_code) }
        }
    }
   
    // Return the half-carry and carry of adding two u8s
    fn check_carry_add_u8(&self, lhs: u8, rhs: u8) -> (bool, bool) {
        let (_, carry) = lhs.overflowing_add(rhs);
        let half_carry = ((lhs & 0xf).wrapping_add(rhs & 0xf)) & 0x10 == 0x10;
        return (half_carry, carry);
    }
    // Return the half-carry and carry of subtracting two u8s
    fn check_carry_sub_u8(&self, lhs: u8, rhs: u8) -> (bool, bool) {
        let (_, carry) = lhs.overflowing_sub(rhs);
        let half_carry = ((lhs & 0xf).wrapping_sub(rhs & 0xf)) & 0x10 == 0x10; //NOTE: This might need a rework
        return (half_carry, carry);
    }

    pub fn execute(&mut self) {
        let mut next = 0;

        println!("{:b}",  self.instr);
        let oct1 = (self.instr & 0b11000000) >> 6;
        let oct2 = (self.instr & 0b00111000) >> 3;
        let oct3 = self.instr & 0b00000111;
        println!("{:b} {:b} {:b}", oct1, oct2, oct3);

        match (oct1, oct2, oct3) {
            (0b11, 0b001, 0b001) => {  }, //CB-prefixed instructions
            (0b00, 0b000, 0b000) => { println!("NOOP") }, //noop
            (0b00, 0b001, 0b000) => { self.ld_u16_sp() }, //LD (u16), SP
            (0b00, 0b010, 0b000) => { println!("STOP") }, //STOP
            (0b00, 0b011, 0b000) => { self.jr() }, //JR
            (0b00, 0b100..=0b111, 0b000) => { self.jr_cond(oct2) }, //JR conditonal
            (0b00,0b000|0b010|0b100|0b110, 0b001) => { self.ld_r16_u16(oct2) }, //LD r16, u16
            (0b00,0b001|0b011|0b101|0b111, 0b001) => { self.add_hl_r16(oct2) }, //ADD HL, r16
            (0b00,0b000|0b010|0b100|0b110, 0b010) => { self.ld_r16_addr_a(oct2) }, //LD (r16), A
            (0b00,0b001|0b011|0b101|0b111, 0b010) => { self.ld_a_r16_addr(oct2) }, //LD A, (r16)
            (0b00,0b000|0b010|0b100|0b110, 0b011) => { self.inc_r16(oct2) }, //INC r16
            (0b00,0b001|0b011|0b101|0b111, 0b011) => { self.dec_r16(oct2) }, //DEC r16
            (0b00, r8, 0b100) => { self.inc_r8(r8) }, //INC r8
            (0b00, r8, 0b101) => { self.dec_r8(r8) }, //DEC r8
            (0b00, r8, 0b110) => { self.ld_r8_n8(r8) }, //LD r8, u8
            (0b00, opcode, 0b111) => { self.special_opcodes(opcode) }, //Opcode grp 1
            (0b01, 0b110, 0b110) => { self.halt() }, //HALT
            (0b01, dst_r8, src_r8) => { self.ld_r8_r8(src_r8, dst_r8) }, //LD r8, r8
            (0b10, op, r8) => { self.alu_a_r8(op, r8);  }, //ALU A, r8
            (0b11, 0b000..=0b011, 0b000) => {  }, //RET condition
            (0b11, 0b100, 0b000) => {  }, //LD (FF00 + u8), A
            (0b11, 0b101, 0b000) => {  }, //ADD SP, i8
            (0b11, 0b110, 0b000) => {  }, //LD A, (FF00 + u8)
            (0b11, 0b111, 0b000) => {  }, //LD HL, SP + i8
            (0b11, 0b000|0b010|0b100|0b110, 0b001) => {  }, //POP r16
            (0b11, 0b001|0b011|0b101|0b111, 0b001) => {  }, //0: RET, 1: RETI, 2: JP HL, 3: LD SP, HL
            (0b11, 0b000..=0b011, 0b010) => {  }, //JP
            (0b11, 0b100, 0b010) => {  }, //LD (FF00 + C), A
            (0b11, 0b101, 0b010) => {  }, //LD (u16), A
            (0b11, 0b110, 0b010) => {  }, //LD A, (FF00 + C)
            (0b11, 0b111, 0b010) => {  }, //LD A, (u16)
            (0b11, opcode, 0b011) => {  }, //0: JP u16, 1: CB prefix, 6: DI, 7: EI
            (0b11, 0b000..=0b011, 0b100) => {  }, //CALL condition
            (0b11, 0b000|0b010|0b100|0b110, 0b101) => {  }, //PUSH r16
            (0b11, 0b001, 0b101) => {  }, //CALL u16
            (0b11, opcode, 0b110) => {  }, //ALU a, u8
            (0b11, exp, 0b111) => {  }, //RST
            _ => { println!("Error: 0x{:02X} not implemented!", self.instr); std::process::exit(1); },
        }

        self.pc += next;
    }


    // Load value from dst_r8 into src_r8. When called as LD r1 r2, this method
    // is called as ld_r8_r8(r2, r1) (Notice the inversion)
    fn ld_r8_r8(&mut self, src_r8: u8, dst_r8: u8) {
        let value = self.get_r8_register(src_r8);
        self.set_r8_register(dst_r8, value);

    }

    //TODO - Respond to interrupt
    fn halt(&mut self) {

    }

    //TODO
    fn special_opcodes(&mut self, opcode: u8) {
    }


    //Increment value in register r8 by 1
    fn inc_r8(&mut self, register_lookup: u8) {
        let register = self.get_r8_register(register_lookup);
        let sum = register.wrapping_add(1);
        if sum == 0 { self.flags.zero = 0 }
        self.flags.n = 0;
        let (half_carry, _) = self.check_carry_add_u8(register, 1);
        if half_carry { self.flags.h = 1 }
        self.set_r8_register(register_lookup, sum);
    }

    //Decrement value in register r8 by 1
    fn dec_r8(&mut self, register_lookup: u8) {
        let register = self.get_r8_register(register_lookup);
        let sum = register.wrapping_sub(1);
        if sum == 0 { self.flags.zero = 0 }
        self.flags.n = 1;
        let (half_carry, _) = self.check_carry_sub_u8(register, 1);
        if half_carry{ self.flags.h = 1 }
        self.set_r8_register(register_lookup, sum);
    }

    //Increment value in register r16 by 1
    fn inc_r16(&mut self, register_lookup: u8) {
        let mut register = self.get_r16_register_address(register_lookup);
        register = register.wrapping_add(1);
        self.set_r16_register_address(register_lookup, register);
    }

    //Decrement value in register r16 by 1
    fn dec_r16(&mut self, register_lookup: u8) {
        let mut register = self.get_r16_register_address(register_lookup);
        register = register.wrapping_sub(1);
        self.set_r16_register_address(register_lookup, register);
    }

    //Load value  n8 into register r8
    fn ld_r8_n8(&mut self, r8: u8) {
        self.set_r8_register(r8, self.byte2);
    }

    //Load value pointed in memory by r16 register pair into register A
    fn ld_a_r16_addr(&mut self, register_lookup: u8) {
        let memory_address = self.get_r16_register_memory_address(register_lookup);
        self.a = self.read_memory(memory_address);
    }
    // Load the 8 bit value in register A to the memory address pointed by the register from the
    // table
    fn ld_r16_addr_a(&mut self, register_lookup: u8) {
        let memory_address = self.get_r16_register_memory_address(register_lookup);
        self.write_memory(memory_address, self.a);
    }

    //Add register r16 value to HL
    fn add_hl_r16(&mut self, register_lookup: u8) {
        let r16 = self.get_r16_register_address(register_lookup);
        let hl = self.get_r16_register_address(0b101); //0b101 == HL register pair
        let (sum, overflow_high) = r16.overflowing_add(hl);

        //Additions reset the n flag
        self.flags.n = 0;
        //Check 11th to 12th bit overflow
        if (r16 & 0xfff).overflowing_add(hl & 0xfff).1 as u8 == 1 { self.flags.h = 1 }
        //Check 15th to 16th bit overflow
        if overflow_high { self.flags.carry = 1 }

        self.set_r16_register_address(0b101, sum);
    }

    //Load value u16 into register r16
    fn ld_r16_u16(&mut self, register_lookup: u8) {
        let address = (self.byte2 as u16) << 8 | self.byte3 as u16; 
        self.set_r16_register_address(register_lookup, address);
    }

    //Conditional Jump
    fn jr_cond(&mut self, condition: u8) {

        let should_execute = match condition {
            0b100 => { self.flags.zero != 0 },
            0b101 => { self.flags.zero == 0},
            0b110 => { self.flags.carry != 0 },
            0b111 => { self.flags.carry == 0 },
            _c => { panic!("Unknown condition {}", _c) }
        };
        if should_execute {
            let offset: i8 = self.byte2 as i8;
            self.pc = self.pc.wrapping_add_signed(offset.into());
        }
    }

    //Unconditional relative jump
    fn jr(&mut self) {
        let offset: i8 = self.byte2 as i8;
        self.pc = self.pc.wrapping_add_signed(offset.into());
    }

    //Store SP lower at address u16, and SP upper at address u16 + 1
    fn ld_u16_sp(&mut self) {
        let address: u16 = (self.byte2 as u16) << 8 | self.byte3 as u16;
        self.write_memory(address, (self.sp & 0xff) as u8);
        self.write_memory(address + 1, (self.sp >> 8) as u8);
    }

    //All math based operations are processed here
    fn alu_a_r8(&mut self, opcode: u8, r8: u8) {
        match opcode {
            0b000 => { self.add_a_r8(r8) },
            0b001 => { self.adc_a_r8(r8) },
            0b010 => { self.sub_a_r8(r8) },
            0b011 => { self.sbc_a_r8(r8) },
            0b100 => { self.and_a_r8(r8) },
            0b101 => { self.xor_a_r8(r8) },
            0b110 => { self.or_a_r8(r8) },
            0b111 => { self.cp_a_r8(r8) },
            _ => { panic!("Invalid ALU A R8 Operation: opcode: {}, register: {}", opcode, r8)}
        }
    }

    //Add the value in r8 to the a register
    fn add_a_r8(&mut self, r8: u8) {
        let reg_val = self.get_r8_register(r8);
        let (half_carry, carry) = self.check_carry_add_u8(self.a, reg_val);
        self.a = self.a.wrapping_add(reg_val);
        if half_carry { self.flags.h = 1 }
        if carry { self.flags.carry = 1 }
        if self.a == 0 { self.flags.zero = 0 }
        self.flags.n = 0;
    }
    //Add the value in r8 to the a register, along with the value of the carry flag
    fn adc_a_r8(&mut self, r8: u8) {
        let sum = self.get_r8_register(r8).wrapping_add(self.flags.carry);
        let (half_carry, carry) = self.check_carry_add_u8(self.a, sum);
        self.a = self.a.wrapping_add(sum);

        if half_carry { self.flags.h = 1 }
        if carry { self.flags.carry = 1 }
        if self.a == 0 { self.flags.zero = 0 }
        self.flags.n = 0;

    }
    //Sub the value in r8 from the a register
    fn sub_a_r8(&mut self, r8: u8) {
        let reg_val = self.get_r8_register(r8);
        let (half_carry, carry) = self.check_carry_sub_u8(self.a, reg_val);
        self.a = self.a.wrapping_sub(reg_val);

        if half_carry { self.flags.h = 1 }
        if carry { self.flags.carry = 1 }
        if self.a == 0 { self.flags.zero = 0 }
        self.flags.n = 1;
    }
    //Sub the value in r8 from the a register along with the value of the carry flag
    fn sbc_a_r8(&mut self, r8: u8) {
        let sum = self.get_r8_register(r8).wrapping_add(self.flags.carry);
        let (half_carry, carry) = self.check_carry_sub_u8(self.a, sum);
        self.a = self.a.wrapping_sub(sum);

        if half_carry { self.flags.h = 1 }
        if carry { self.flags.carry = 1 }
        if self.a == 0 { self.flags.zero = 0 }
        self.flags.n = 1;
    }

    //Bitwise AND between r8 value and A
    fn and_a_r8(&mut self, r8: u8) {
        self.a = self.a & self.get_r8_register(r8);
        if self.a == 0 { self.flags.zero = 0 }
        self.flags.n = 0;
        self.flags.h = 1;
        self.flags.carry = 0;
    }

    //Bitwise XOR between r8 value and A
    fn xor_a_r8(&mut self, r8: u8) {
        self.a = self.a ^ self.get_r8_register(r8);
        if self.a == 0 { self.flags.zero = 0 }
        self.flags.n = 0;
        self.flags.h = 0;
        self.flags.carry = 0;
    }

    //Bitwise OR between r8 value and A
    fn or_a_r8(&mut self, r8: u8) {
        self.a = self.a | self.get_r8_register(r8);
        if self.a == 0 { self.flags.zero = 0 }
        self.flags.n = 0;
        self.flags.h = 0;
        self.flags.carry = 0;
    }

    //Subtract value in r8 from A, but don't store the result, only set flags
    fn cp_a_r8(&mut self, r8: u8) {
        let reg_val = self.get_r8_register(r8);
        let (half_carry, carry) = self.check_carry_sub_u8(self.a, reg_val);
        let tmp = self.a.wrapping_sub(reg_val);

        if half_carry { self.flags.h = 1 }
        if carry { self.flags.carry = 1 }
        if tmp == 0 { self.flags.zero = 0 }
        self.flags.n = 1;
    }
}